

Decibel & S-Readings

Serge Stroobandt, ON4AA

Copyright 2015–2021, licensed under Creative Commons BY-NC-SA

Base-10 logarithms: log₁₀ *x*

 $\log_{10} x = \dots$ means: "To what power do I need to raise 10, in order to obtain x?"

$$\log_{10} x = y \quad \Leftrightarrow \quad 10^y = x \tag{1}$$

dB as a power ratio

The decibel (dB) is a logarithmic unit used to express the ratio of two values of a physical quantity.¹ For power ratios the decibel unit is defined as follows:

$$L_{dB} = 10 \cdot \log_{10} \frac{P_{out}}{P_{in}} \tag{2}$$

dB as a field amplitude ratio

For intensity ratios the decibel unit is defined as follows:

$$G_{dB} = 20 \cdot \log_{10} \frac{A_{out}}{A_{in}} \tag{3}$$

Decibel conversion table

decibel conversion table			
dB	$\frac{P_{out}}{P_{in}}$	$\frac{A_{out}}{A_{in}}$	
40	10000	100	
30	1000	≈31.62	
20	100	10	
10	10	≈3.162	
6	≈ 4	≈ 2	
3	≈ 2	$\approx \sqrt{2} \approx 1.414$	
1	≈ 1.25	≈ 1.125	

Table 1: Mnemonic

dB	$\frac{P_{out}}{P_{in}}$	$\frac{A_{out}}{A_{in}}$
0	1	1
-1	≈0.8	≈0.9
-3	$\approx \frac{1}{2} = 0.5$	$\approx \frac{1}{\sqrt{2}} \approx 0.707$
-6	$\approx \frac{1}{4} = 0.25$	$\approx \frac{1}{2} = 0.5$
-10	0.1	≈0.3162
-20	0.01	0.1
-30	0.001	≈0.03162
-40	0.0001	0.01

dBm as a power level

dBm is a logarithmic unit of power level, expressed in decibel (dB) and referenced to a power level of one milliwatt (mW).²

dBm	P _{out}	typical for
60	1kW	typical radiated RF power of a microwave oven
50	100W	typical maximum output RF power from a ham radio HF transceiver
40	10W	
37	$\approx 5W$	typical maximum output RF power from a handheld ham radio VHF/UHF transceiver
33	pprox 2W	maximum output from a GSM 850/900 mobile phone
30	1W	DCS or GSM 1 800/1 900 MHz mobile phone
20	100mW	EIRP for a IEEE 802.11b/g 20 MHz-wide channel in the 2.4 GHz ISM band (5 mW/MHz)
10	10mW	
0	1mW	Bluetooth class 3 radio with 1 m range
-10	100µW	IEEE 802.11 maximal signal strength
-60	1nW	power received per m ² of a magnitude +3.5 star
-73	$\approx 50 pW$	S9 signal strength on S-meter
-100	100fW	IEEE 802.11b/g minimal signal strength
-101	$\approx 83 \mathrm{fW}$	noise floor of a IEEE 802.11b/g 20 MHz channel at 300 K
-134	$\approx 41 \mathrm{aW}$	noise floor of a 10 kHz wide FM signal at 300 K
-140	$\approx 12 aW$	noise floor of a 2.7 kHz wide SSB signal at 300 K

Table 2: dBm as a power level

In this table, the term noise floor refers to the calculated thermal noise, also known as the Johnson–Nyquist noise.³

HF S-meter

Many amateur radio and shortwave broadcast receivers feature a signal strength meter (S-meter).⁴ In 1981, the International Amateur Radio Union (IARU) Region 1 agreed on a technical recommendation for S-meter calibration of HF and VHF/UHF transceivers.^{5,6}

IARU Region 1 Technical Recommendation R.1 defines S9 for the HF bands to be a receiver input power of -73 dBm. This is a level of 50 μ V at the receiver's antenna input assuming the input impedance of the receiver is 50 Ω .

The recommendation defines a difference of one S-unit corresponds to a difference of 6 dB, equivalent to a voltage ratio of two, or a power ratio of four. Signals stronger than S9 are given with an additional dB rating, thus "S9 + 20 dB", or, verbally, "20 decibel over S9", or simply "20 over 9" or even the simpler "20 over."

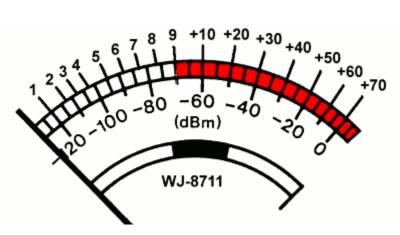


Figure 1: Well-designed S-meter on the DRS WJ-8711A HF transceiver. Source: N9EWO

units					
S-reading	P_{out} @50 Ω	V_{out} @50 Ω	$\frac{V_{out}}{[1\mu V]} @50\Omega$		
S9 + 40 dB	-33 dBm	5.0 mV	74 dBµV		
S9 + 30 dB	-43 dBm	1.6 mV	$64 dB \mu V$		
S9 + 20 dB	-53 dBm	0.50 mV	$54 dB \mu V$		
S9 + 10 dB	-63 dBm	0.16 mV	$44 \ dB\mu V$		
S9	-73 dBm	50 µV	$34 dB \mu V$		
S8	-79 dBm	$25 \ \mu V$	$28 dB \mu V$		
S7	-85 dBm	12.6 μV	$22 dB \mu V$		
S6	-91 dBm	6.3 μV	$16 dB \mu V$		
S5	-97 dBm	3.2 μV	$10 \ dB\mu V$		
S4	-103 dBm	1.6 μV	$4 dB \mu V$		
S3	-109 dBm	800 nV	-2 $dB\mu V$		
S2	-115 dBm	400 nV	-8 $dB\mu V$		
S1	-121 dBm	200 nV	-14 dBµV		

Table 3: Conversion between power and HF Sunits

The noise floor for a B = 2700 Hz wide SSB signal at T = 300 K is:³

 $P = k_B \cdot T \cdot B = k_B \cdot 300 \cdot 2700 = 11.8 \cdot 10^{-18} \text{ W} = 11.8 \text{ aW} = -139.5 \text{ dBm}$

where $k_B = 1.3806488 \cdot 10^{-23}$ J/K is Boltzmann's constant.

VHF/UHF S-meter

The same IARU Region 1 recommendation defines S9 for VHF/UHF to be a receiver input power of -93 dBm. This is the equivalent of 5 μ V in 50 Ω . Again, one S-unit corresponds to a difference of 6 dB, equivalent to a voltage ratio of two, or a power ratio of four.

VHF/UHF S-units						
S-reading	P_{out} @50 Ω	V_{out} @50 Ω	$\frac{V_{out}}{[1\mu V]} @50\Omega$			
S9 + 40 dB	-53 dBm	0.50 mV	$54 dB \mu V$			
S9 + 30 dB	-63 dBm	0.16 mV	$44 \ dB\mu V$			
S9 + 20 dB	-73 dBm	$50 \ \mu V$	$34 dB \mu V$			
S9 + 10 dB	-83 dBm	16 µV	$24 dB \mu V$			
S9	-93 dBm	$5.0 \ \mu V$	$14 \ dB \mu V$			
S8	-99 dBm	$2.5 \ \mu V$	$8 dB \mu V$			
S7	-105 dBm	1.26 μV	$2 dB \mu V$			
S6	-111 dBm	630 nV	-4 $dB\mu V$			
S5	-117 dBm	320 nV	-10 $dB\mu V$			
S4	-123 dBm	160 nV	-16 dBµV			
S3	-129 dBm	80 nV	-22 $dB\mu V$			
S2	-135 dBm	40 nV	$-28 \text{ dB}\mu\text{V}$			
S1	-141 dBm	20 nV	-34 dBµV			

Table 4: Conversion between power and VHF/UHF S-units

The noise floor for a 10 kHz wide FM signal at 300 K is:³

 $P = k_B \cdot T \cdot B = k_B \cdot 300 \cdot 10^4 = 41 \cdot 10^{-18} \text{ W} = 41 \text{ aW} = -134 \text{ dBm}$

where $k_B = 1.3806488 \cdot 10^{-23}$ J/K is Boltzmann's constant.

References

- 1. Wikipedia. Decibel. https://en.wikipedia.org/wiki/Decibel
- 2. Wikipedia. dBm. https://en.wikipedia.org/wiki/dBm
- 3. Wikipedia. Johnson–Nyquist noise. https://en.wikipedia.org/wiki/ Johnson–Nyquist_noise
- 4. Wikipedia. S meter. https://en.wikipedia.org/wiki/S_meter
- IARU Region 1 Technical Recommendation R.1. International Amateur Radio Union Region I; 1981. http://hamwaves.com/decibel/doc/iaru.region.1.smeter.pdf
- Ulrich Mueller, DK4VW. *IARU Region 1 HF Manager Handbook v8.1*. IARU; 1994. http://www.iaru-r1.org/index.php/downloads/Documents/HF/ IARU-Region-1-HF-Manager-Handbook-V.8.1/

This work is licensed under a **Creative Commons** Attribution-NonCommercial-ShareAlike 4.0 International License. Other licensing available on request.

Unattended CSS typesetting with Prince.

This work is published at https://hamwaves.com/decibel/en/.

Last update: Saturday, December 4, 2021.